A Bit Of Gamma-Ray Bursts

Carlo Graziani
What Are Gamma-Ray Bursts?

- Bursts of gamma rays arrive at the Earth at a rate of about 1-2 per day.
- The arrival directions are uniform on the sky.
- The durations range from a few milliseconds to hundreds of seconds.
- The light curve morphologies are quite varied — some are smooth, some spiky and chaotic, some are composed of a single pulse, some have several episodes of emission.
GRB Light Curves

Source: NASA/MSFC

http://www.batse.msfc.nasa.gov/
The spectra are broad and non-thermal, peaking anywhere between 10 keV and 1 MeV, and extending well past 1 Mev.
A Brief History Of Gamma-Ray Bursts

Between 1967 and 1973, the VELA treaty-monitoring satellites made a startling and unexpected observation: flashes of gamma-rays from deep space — Gamma-Ray Burst.

Source: HEASARC
(http://antwrp.gsfc.nasa.gov/apod/ap951105.html)
A Brief History Of Gamma-Ray Bursts

The arrival directions of these bursts were determined by time-of-flight triangulation between widely-separated spacecraft, a technique now known as “Interplanetary Network” (IPN) location.

In this manner, the VELA team found that the bursts were coming from random directions on the sky (and not, in fact, from the Earth, the Moon, or anywhere in the plane of the Ecliptic).
Slow Progress

After the initial discovery, progress in understanding Gamma-Ray Bursts was very slow for about twenty years. During that time, the field was largely crippled by the technological difficulty of obtaining precise — and prompt — direction-of-arrival information for GRBs.

No accurate — and timely — GRB locations meant no possibility of follow-up at other wavelengths, to attempt to observe the embers of the explosion. This in turn foreclosed the possibility of connecting the GRB phenomenon to other known astrophysical phenomena.

As a consequence, researchers could not even agree on the distance scale to the sources (Galactic or Cosmological?), let alone the nature of the sources and physical mechanisms involved.
No Hosts

Among the “facts” that everyone “knew” about GRBs up to the mid-1990’s was that when accurate locations were available (from IPN), no obvious source could be discerned in the error-box. This became known as the “No-Host” problem.

We now understand this to be due to limitations in the available GRB location techniques:

- IPN: Accurate ($< 1^\circ$), but long delays (many days).
- BATSE: Prompt (minutes), but too inaccurate (many degrees).
Source: COMPTON Science Support Center

(http://cosscc.gsfc.nasa.gov/images/cgro)
The Breakthrough

The field finally began to break open in 1997, after the launch of the BeppoSAX satellite.

Source: BeppoSAX Science Data Center
(http://www.asdc.asi.it/bepposax/first/grb970228.html)
The Breakthrough — Cont’d

GRB 970228

Source: Groot et al. 1997, IAUC 6584

(http://www.mpe.mpg.de/jcg/grb970228.html)
The Breakthrough — Cont’d

GRB 970228

Source: Fruchter et al. 1998

The Breakthrough — Cont’d

GRB 970228

Source: Fruchter et al. 1998

What Did We Learn From BeppoSAX?

- GRB sources are in distant \((z \sim 1)\) galaxies.
- The sources are almost invariably in star-forming regions.
 - Massive star collapse a likely culprit.
- Energetics and evolution of light curves (breaks) suggest collimated outflow.
- Further progress to be achieved by probing the accurate location – short delay regime. Specifically, the follow-up time required advancement, from \(T+\)hours to \(T+\)seconds.
 - Enter HETE.
HETE-2: The High-Energy Transient Explorer

Launched in October 2000, HETE-2 was designed to obtain GRB locations in real-time, and propagate them over the Internet to observatories around the world for prompt follow-up.

Source: HETE Home Page
(http://space.mit.edu/HETE/gallery.html)
The HETE-2 Instruments

- FREGATE energy response: 6-400 keV
- WXM location accuracy: 5-20 Arcminutes
- SXC location accuracy: 1-2 Arcminutes
Three Primary Ground Stations (PGSs) for high-bandwidth data download and spacecraft commanding.

Net of 15 low-bandwidth Secondary Ground Stations (SGSs) ring the globe.

SGSs relay Burst Alerts to Ops Center at MIT, where they are sent on to the GRB Coordinates Network (GCN) system at Goddard. Observers who subscribe to the GCN can get Notices within tens of seconds of a GRB trigger.
The VHF Console

GPS time 77993285.810 [20040623,140752], ORBIT DAY, TT=+4.4, Kwaj-PGS [31]

Location: Long=173.0 deg W, Lat=1.7 deg N, Alt=564.5 km, Orbit phase=+0.72

SC:
- 103 Cm-1 Free-15 Pri-00

NC:
- 0519 1626 7049 5058
- 5189 1617 SEQ NODES = 7775 LINKS = FFFF

MM:
- 3145.0 215.5 3161.0 3639.0 KB

Bus:
- 3152V 6500 3.52k 0.073A

Cur:
- 3.4764 psW = 0000 Charge = 86.698 SW

SP:
- 3152V SEQU SEQ NODES = 7775 LINKS = FFFF

HTR:
- 3152V SEQU SEQ NODES = 7775 LINKS = FFFF

ACR model:
- 1.0 1.0 1.0 1.000

vht:
- 94.04, omega(0.58 0.53 0.55)**

gamma:
- NODES/HV: burst #36
- U 2, msg 2858; 159.6, 633 eVs/S; scale = 78
- U 3, msg 2858; 1516, 650 eVs/S; scale = 20

WOM:
- standard vhf diagnostics

**node = 0x0007 ON_PORTC_HV

SIS:
- IQ/RX = 9165
- Voltage = Scale: 0x0e HVA: 216 HVB: 214
- LAST_CMD: 0x5047

COUNTS:
- RX: 128 KB: 155 YA: 125 YB: 0

async:
- idle
- reading n51, next idle

status:
- OW-0, OB-1, AD-4, 15 DR-3, 3

MK error flag:
- 0

CTEMP:
- -41C, -46C

Star word:
- 0xf090

RA, dec, roll:
- 182.956 -0.895 46.304

GPS time 70042414.146 [20020317,181533], ORBIT NIGHT, TT=N/A, Palau [31]

Location: Long=127.0 deg E, Lat=1.9 deg S, Alt=594.0 km, Orbit phase=+0.61

-------- BEEP ----------------

burst:
- in progress, ID = 195, GAMMA triggered

Trigger time: 70042414.429512 [20020317,181533]

Location: Long=127.0 deg E, Lat=1.9 deg S, Alt=594.0 km, Orbit phase=+0.61

Running:
- gamma YES, wam YES, sxr YES, opt NO

Responded:
- gamma YES, wam NO, sxr NO, opt NO

**T1=1.3s, B=6-120 keV, D=2x3, p=5, ps=5, p5=5, cta=55

GPS time 70042414.181 [20020317,181533], ORBIT NIGHT, TT=N/A, Palau [31]

Location: Long=127.0 deg E, Lat=1.9 deg S, Alt=594.0 km, Orbit phase=+0.61

-------- BEEP ----------------

burst:
- in progress, ID = 195, GAMMA triggered

Trigger time: 70042414.429512 [20020317,181533]

Location: Long=127.0 deg E, Lat=1.9 deg S, Alt=594.0 km, Orbit phase=+0.61

Running:
- gamma YES, wam YES, sxr YES, opt NO

Responded:
- gamma YES, wam NO, sxr NO, opt NO

**T1=1.3s, B=6-120 keV, D=2x3, p=5, ps=5, p5=5, cta=55

GPS time 70042414.973 [20020317,181533], ORBIT NIGHT, TT=N/A, Palau [31]

Location: Long=127.2 deg E, Lat=1.9 deg S, Alt=594.0 km, Orbit phase=+0.61

-------- BEEP ----------------

burst:
- in progress, ID = 195, GAMMA triggered

Trigger time: 70042414.429512 [20020317,181533]

Location: Long=127.0 deg E, Lat=1.9 deg S, Alt=594.0 km, Orbit phase=+0.61

Running:
- gamma YES, wam YES, sxr YES, opt NO

Responded:
- gamma YES, wam NO, sxr NO, opt NO

**T1=1.3s, B=6-120 keV, D=2x3, p=5, ps=5, p5=5, cta=55

**XMC full localization is 132 658, S/N 1.6 0.9

**XMC region localization is 1679 1686, S/N 0.3 0.2

GPS time 70042415.062 [20020317,181537], ORBIT NIGHT, TT=N/A, Palau [31]

Location: Long=127.2 deg E, Lat=1.9 deg S, Alt=594.1 km, Orbit phase=+0.61

-------- BEEP ----------------

burst:
- in progress, ID = 195, GAMMA triggered

Trigger time: 70042414.429512 [20020317,181533]

Location: Long=127.0 deg E, Lat=1.9 deg S, Alt=594.1 km, Orbit phase=+0.61

Running:
- gamma YES, wam YES, sxr YES, opt NO

Responded:
- gamma YES, wam NO, sxr NO, opt NO

**T1=1.3s, B=6-120 keV, D=2x3, p=5, ps=5, p5=5, cta=55

**XMC full localization is 132 658, S/N 1.6 0.9

**XMC region localization is 1679 1686, S/N 0.1 0.6

GPS time 70042415.399 [20020317,181538], ORBIT NIGHT, TT=N/A, Palau [31]

Location: Long=127.4 deg E, Lat=1.9 deg S, Alt=594.1 km, Orbit phase=+0.61

Normal State

Burst Alert!
3.75 Years Of HETE: Summary

- HETE has localized 70 GRBs in 3.75 yrs of operation.
- 26 of these localizations have led to the detection of X-ray, optical, or radio afterglows.
- As of today, redshifts have been reported for 14 of these afterglows.
A Typical HETE GRB Trigger

- **T=0**: One of the on-board instruments detects a sudden change in the count rate, and declares a trigger.

- **T=1-10 sec**: VHF messages are relayed through the Secondary Ground Station (SGS) network to the operations center at MIT. HETE Science team members receive automatic beeper alerts. An automatic alert also goes to the Gamma-Ray Burst Coordinate Network (GCN), at NASA/Goddard Space Flight Center in Maryland. This alert is propagated over the Internet to interested parties at observatories around the World.
A Typical HETE GRB Trigger — Cont’d

- **T=5-60 sec:** Meantime, back on the spacecraft, WXM is attempting to obtain a location for the GRB. It will do this repeatedly, attempting to improve the location accuracy by selecting better and better stretches of data. Each location is relayed to the ground through the SGS net, then to MIT. If it meets certain quality criteria, it will be forwarded on to the GCN, and to astronomical observatories.

- **T=1-5 minutes:** The Science Team gathers on the Internet, using hchat, a special purpose HETE chat room, to communicate. We make preliminary assessments about the event on the basis of information transmitted over VHF.
A Typical HETE GRB Trigger — Cont’d

- **T~10-40 minutes:** HETE passes over one of its three Primary Ground Stations (PGS) and sends high-resolution Burst data products to the ground. These are relayed to MIT for further analysis.

- **T~15-50 minutes:** The data is processed by the automatic Burst Data Processing Pipeline at MIT. If the event is a GRB its location is refined, if possible. Lots of files are examined by lots of people, and `hchat` gets very busy as various analysts share the results.

- **T~40 minutes - 8 hours:** The data may be subjected to various special-purpose, non-automatic analyses, in order to understand better the nature of the event and to refine the location coordinates. If refined locations based on ground analysis are obtained, they are disseminated over the Internet.
This Morning(!)

- Trigger in FREGATE Band B (6-80 keV).
- Trigger time: 11:52:11 UT (6:52 CDT)
- Location distributed at 11:52:25 UT (T + 14s).
GRB040924

Trigger: 2004 October 24 11:52:11 UT
GRB040924

Trigger: 2004 October 24 11:52:11 UT

This Morning — Cont’d
D.Fox & D. Moon: R-magnitude ~ 17 at $T + 15\text{min}$ (GCN 2734).
The GRB Rosetta Stone: GRB 030329

- Brightest GRB seen by HETE (by a long shot!), in BATSEs top 4.
- Optical afterglow detected at an R=13(!), 75 minutes after the GRB.
- Redshift measured from H emission lines in spectrum: $z=0.1685$, second-closest GRB afterglow yet observed, after GRB980425.
GRB 030329 — Cont’d

Collected light curve (Zeh et al., GCN 2047) shows persistently bright afterglow. R=19 ten days after the burst!

“Jet Break” after a few hours followed by two mysterious periods of re-brightening.

Source: Zeh et al. GCN 2047
(http://www.mpe.mpg.de/~jcg/grb030329.html)
GRB 030329 — Cont’d

A Type Ib-Ic Supernova spectrum emerges from the featureless afterglow spectrum at T+8 days!

Source: Matheson et al. GCN 2107 & 2120
(http://www.mpe.mpg.de/~jcg/grb030329.html)
What We Learned From GRB 030329

- The GRB – SN connection is observationally confirmed!

Implications:

- We need to understand Type Ib/Ic core collapse SNe in order to understand GRBs.
- Conversely, we need to understand GRBs in order to fully understand Type Ib/Ic core collapse SNe.
- Result strengthens the expectation that GRBs occur out to $z \sim 20$, and are therefore a powerful probe of cosmology and the early universe.
What Are GRBs?

- A massive, probably rotating, possibly magnetized star undergoes gravitational collapse.
- A highly collimated relativistic jet blasts away.
- Prompt emission arises from collisions between internal shocks.
- Afterglow arises from external shock.

Source: P. Meszaros