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Cosmology

S @ young science

its story ®nly begms 90-years
ago, 300+ ye-ars after the

invention of the ilescope



1916-1918: General Relativity & A
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1929: Just One Number K

(error bars not needed, velocity in km)
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1929: Just One Number K

(error bars not needed, velocity in km)

rlundly < rlumegnen oy 199 galasigs 2< 9 |



Gamow’s Hot Big Bang

alpher, bethe, gamow,” 1948 "5033 GEORGE GAMOW

Authos of One Two Thiee...Infinity

The CREATION of the

UNIVERSE

A dromotic, lucid explanction of the sriging of goloxies. stary
’ and planets in the light of whot sclence knaws faday.

Profusely ilfustroted
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1948: Steady State
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1948: Steady State




1948: Steady State




Cosmology: The Search for
Two Numbers ... H, and g, (Sandage 1970)
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Landau on

Cosmologists




Landau on
Cosmologists
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Often in Error,

TNeve‘r in Doubt!




and at U Mass

The Redbook; a manual for faculty members
that explame‘what a university was;-and
what it wasn't. It mted twe courses one
wouldn't find in a curnculum of.higher
education=witchéraft an osmology.




4 Thomson - Brooks/Cole
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“The Standard Model”
Hot Big Bang (circa 1972)

“Reality (physics) Based”
« BBN (nuclear physics)
« CMB (atomic physics)

S SRAVITATION * Structure Formation (grav.
s somorauor || PNYSICS)
RELATIVITY « Begins at 0.01 sec

STEVEN wiao

“e Q,~ 0.1 (baryons)
Big Questions
. “The naughts”: H,, t,, Q,

« Large entropy per baryon
« Hadron Wall

* Origin of density
perturbations




The Hadron Wall

S. Weinberg in Gravitation & Cosmology

11 The Very Early Universe

The thermal history of the universe was traced in Section 15.6 back to an era
when the temperature was about 10!2°K. At this early time, the universe was
filled with particles—photons, leptons, and antileptons—whose interactions are
hopefully weak enough to allow this medium to be treated as a more or less ideal
gas. However, if we look back g little further, into-the first 0.0001 see of cosmic
history when the temperature was above 101%°K, we encounter theoretical prob-
lems of a difficulty beyond the range of modern statistical mechanics. At such
temperatures, there will be present in thermal equilibrium copious numbers of
strongly interacting particles—mesons, baryons, and antibaryons—with a mean
interparticle distance less than a typical Compton wavelength. These particles
will be in a state of continual mutual interaction, and cannot reasonably be
expected to obey any simple equation of state.

However, the temptation to try to construct some sort of model of the very
early universe is irresistible. There are in fact two extremely different simple

. models that have been widely considered in recent years, and that reflect two
divergent views of the nature of the strongly interacting parsicles. Although
neither model can be taken seriously in detail, the hope is that one or the other
of these models may come close enough to reality to lead to useful insights about
the very early universe,

The first of these two pictures may be called the elementary particle model.
It is supposed that all particles are made up of a small number of elementary




The Fall nf “Tha I-Iarlrnr] Wa"”




The Fall of “The Hadron Wall”




1980s: The Go Go Junk Bond Days
of Early Universe Cosmology
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Farly Universe
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“Creativity Based”

Inflation

Cosmic Strings
Baryogenesis
Magnetic
Monopoles

Phase Transitions

Hot and Cold Dark
Matter

Decaying Particles
Kaluza-Klein



1990s: Beginning of Data-driven
Cosmology . e

COBE! and CMB experiments @%ﬁigjfﬁﬁf
Redshift surveys (CfA, IRAS, 2dF, SDSS) = . -

Large-scale velocity field measurements -, /.7 % ¢
Gravitational lensing iR
Big telescopes (Keck, ...) with big CCD ;- %"~

GravitationalLens ~ HST - WFPC2

cameras
HST, X-ray, gamma-ray, IR,
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Big Glass on the Ground:
4 VLT, 2 Kecks, 2 Geminis and
2 Magellans
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More on the way!




Great Observatories in Space:
Hubble, Spitzer, Chandra, and
erschel

';“




in Space:
- JWST

Great Observatories
Soon




nt CCD Cameras

Gia
AT - \\\‘ >




Giant CCD Cameras:
Dark Energy Camera
\ /




How farcanyouseeon. =~  * « . %

a clear day?
Back to the birth of
galaxies

IR = ey ." .\. ,""/.-..". :
Hubble Deep Field HST - WFPC2

PRC96-01a - ST Scl OPO . January 15, 1996 - R. Williams (ST Scl), NASA



How far can you see on a
clear day with x-ray eyes?
To supermassive black holes
at the edge of the Universe! g
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2000s: Era of Precision Cosmology

r 4
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Cosmological
parameters

Tests of inflation, CDM

Correlating large,
complex data sets

Cosmological
Consistency

Physical parameters
(e.g., neutrino mass)

e o
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In the midst of a revolutionary
period of discovery --
powerful Jdeasand

Instruments
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The Consensus Césmology

dark matter, dark energy, ian’ation iInspired

fits a largegpody. of precision-datal

-
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The “Consensus Cosmology”

* History from quark soup to nuclei and atoms to
galaxies and large-scale structure

* Flat, accelerating Universe
» Atoms, exotic dark matter. & dark energy
- Consistent with infltion *

* Precision parameters WW

—Q,=1.005% 0.006 (uncurved2 Sl 050 STARS +I0TDAK AL+ TOTIAIE
_Q,, = 0.280 +0.013 N e

_QB = 0.045 + 0.0015

_Qp =0.72+£0.015

—H, =70 + 1.3 km/s/Mpc Tot 41w o

—t, =13.73+0.12 Gyr e

N,=44+15 N 9L % (N NEWFORMS
OF MATTER & ENERSY




I-band Tully—Fisher
Fundamental Plane
Surface Brightness
Supernovae la A,
Supernovae II i
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HO Is now Breakthrough of the Year
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Decoding the Cosmic
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Curve = concordance cosmology

WMAP 7yr 3 1
ACBAR & 1
QUaD ¥ |

100 500 1000 1500 2000
Multipole Moment (/)




Curve = concordance cosmology

WMAP 7yr 3 1
ACBAR & 1
QuUaD ¢

500 1800 1500 2000 2500
£




today

Iiverse

Distribution of 106

the Un

Ies in

galax

(]
| U
-
hd
(&)
-
| S
it
2]
Q
1]
(&
&v
(]
(@]
| 9
©
]

Bio'ssps
Aaning Ayg |enbiq ueols




SDSS Bright Red Galaxy Survey

sdss.org
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Tracing the history from a slightly lumpy
Universe to galaxies ablaze

1.00

— 1.5
Billion Lightyears 0

."‘
‘,‘1 & _ 5

Hubble Deep Field

PRC96-01a - ST Scl OPO - January 15, 1996 - R. Williams (ST Scl), NA!
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The Consensus Cosmology

consistent with an impressive body of data

describes Universe ftom a‘burst of inflation through the
formation of struct shapéd by dark-matter to today
when dark energy contr,o;lq‘.the’tate of the Universe
- ) ,‘" . “
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The Consensus Cosmology
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Rests upon three myste pillars

All implicate new physics!



Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified
theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the “Standard Model.”

matter constituents
spin = 1/2, 3/2, 5/2, ...

FERMIONS
~ Leptons spin=1/2

Size < 1019m
electron
neutrino

<1x10-8 2/3

0.000511 -1/3

2/3
-1/3

2/3

electron Nucleus
si 14 Size
muon ize ~107'*m

n <0.0002
neutrino

€

muon 0.106

tau <0.02 t top
neutrino

P

tau 1.7771 b bottom -1/3 Size

Size = 1010m
Spin is the intrinsic angular momentum of particles. Spin is given in units of K, which is the p—
quantum unit of angular momentum, where fi = h/2r = 6.58x10725 GeV s = 1.05x10734 J 5. If the protons and neutrons in this picture were 10 cm across,
then the quarks and electrons would be less than 0.1 mm in.
. 5 ) . size and the entire atom would be about 10 km across.
Electric charges are given in units of the proton’s charge. In Sl units the electric charge of

the proton is 1.60x10~1° coulombs.

The energy unit of particle physics is the electronvolt (eV), the energy gained by one elec-
tron in crossing a potential difference of one volt. Masses are given in GeV/c2 (remember
E = mc?), where 1 GeV = 109 eV = 1.60x10~'0 joule. The mass of the proton is 0.938 GeV/c?
=1.67x10"27 kg.

Electron

Neutron
and
roton
=105 m

force carriers
spin=0,1, 2, ...

BOSONS

Color Charge

Each quark carries one of three types of
“strong charge,” also called “color charge.”
These charges have nothing to do with the
colors of visible light. There are eight possible
types of color charge for gluons. Just as electri-
cally-charged particles interact by exchanging photons, in strong interactions color-charged par-
ticles interact by exchanging gluons. Leptons, photons, and W and Z bosons have no strong
interactions and hence no color charge.

<1078 m

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called
hadrons. This confinement (binding) results from multiple exchanges of gluons among the
color-charged constituents. As color-charged particles (quarks and gluons) move apart, the ener-
gy in the color-force field between them increases. This energy eventually is converted into addi-
tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into
hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in
nature: mesons qq and baryons qqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual
strong interactions between their color-charged constituents. It is similar to the residual elec-
trical interaction that binds electrically neutral atoms to form molecules. It can also be
viewed as the exchange of mesons between the hadrons.

PROPERTIES OF THE INTERACTIONS

- Residual

“ Quarks, Leptons Electrically charged Quarks, Gluons
Graviton -
Wr W20 |y | awem
0.8

10-41
10741
10-36

104

1
1
107 il

ete” — BOB?
Matter and Antimatter
For every particle type there is a corresponding antiparticle type, denot-
ed by a bar over the particle symbol (unless + or - charge is shown).
Particle and antiparticle have identical mass and spin but opposite
charges. Some electrically neutral bosons (e.g., Z, v, and M, = CC, but not
KO = d3) are their own antiparticles.
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Figures

These diagrams are an artist's conception of physical processes. They are
not exact and have no meaningful scale. Green shaded areas represent
the cloud of gluons or the gluon field, and red lines the quark paths.

d
b

An electron and positron =0
(antielectron) colliding at high energy can B’
annihilate to produce BY and BY mesons

via a virtual Z boson or a virtual photon

A neutron decays to a proton, an electron,
and an antineutrino via a virtual (mediating)
W boson. This is neutron f decay.

Not applicable
to quarks

25

60
Not applicable
to hadrons

pPp—> ZOZO + assorted hadrons
A

The Particle Adventure

Visit the award-winning web feature The Particle Adventure at
http://ParticleAdventure.org

1,

8%
hadrons /

u
\ quarks &

gluons

hadrons \
Z0

\\Y

0

This chart has been made possible by the generous support of:
U.S. Department of Energy

U.S. National Science Foundation

Lawrence Berkeley National Laboratory

Stanford Linear Accelerator Center

American Physical Society, Division of Particles and Fields

BURLE INDUSTRIES, INC.

©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-
tion of teachers, physicists, and educators. Send mail to: CPEP, MS 50-308, Lawrence
Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text
materials, hands-on classroom activities, and workshops, see:

http://CPEPweb.org

hadrons

AN

Two protons colliding at high energy can
produce various hadrons plus very high mass
particles such as Z bosons. Events such as this
one are rare but can yield vital clues to the
structure of matter.



Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified
theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the “Standard Model.”

tt tit t force carriers
FERM'ONS :;:;n irf/(;r,‘ss/lzt,]esr;zf BOSONS spin =0, 1, 2, ...

Size < 10719 m

electron | <1x10-8
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electron |0.000511 Nucleus Color Charge
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e colors of visible light. There are eight possible
0.106 types of color charge for gluons. Just as electri-
Neutron cally-charged particles interact by exchanging photons, in strong interactions color-charged par-
tau <0.02 and Ficles in?eract by exchanging gluons. Leptons, photons, and W and Z bosons have no strong
neutrino Proton interactions and hence no color charge.
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anntum unit of angulgar momentum, wherz h=hi2r 2 6_58310-25 GeVs=1.05x10"34J s, If the protons and neutrons in this picture were 10 cm across, gy in the color-force field between them increases. This energy eventually is converted into addi-
then the quarks and electrons would be less than 0.1 mm I tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into

ize and the entire at Id be about 10 k v h h
RSt the entireiatom;wouc e abolt.10 ki Sees hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in

Electric charges are given in units of the proton’s charge. In Sl units the electric charge of 't
nature: mesons qq and baryons qqq.

the proton is 1.60x10~1° coulombs.
The energy unit of particle physics is the electronvolt (eV), the energy gained by one elec- Residual Strong Interaction
tron in crossing a potential difference of one volt. Masses are given in GeV/c2 (remember The strong binding of color-neutral protons and neutrons to form nuclei is due to residual

E = mc?), where 1 GeV = 109 eV = 1.60x10-10 joule. The mass of the proton is 0.938 GeV/c? strong interactions between their color-charged constituents. It is similar to the residual elec-
=1.67x10"%7 kg. trical interaction that binds electrically neutral atoms to form molecules. It can also be

P RO P E RTI E S 0 F TH E I NT E RACTI 0 N S viewed as the exchange of mesons between the hadrons.

See Residual Strong
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charges. Some’
KO = ds) are th

P prof

Lawrence Berkeley National Laboratory
Stanford Linear Accelerator Center
American Physical Society, Division of Particles and Fields

BURLE INDUSTRIES, INC.

Two protons colliding at high energy can ©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-
An electron and positron 0 produce various hadrons plus very high mass tion of teachers, physicists, and educators. Send mail to: CPEP, MS 50-308, Lawrence
A neutron decays to a proton, an electron, (antielectron) colliding at high energy can particles such as Z bosons. Events such as this Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text
and an antineutrino via a virtual (mediating) annihilate to produce B® and B° mesons one are rare but can yield vital clues to the materials, hands-on classroom activities, and workshops, see:
W boson. This is neutron B decay. via a virtual Z boson or a virtual photon structure of matter.
http://CPEPweb.org

Figures

These diagrams are an artist’s conception of physical processes. They are
not exact and have no meaningful scale. Green shaded areas represent
the cloud of gluons or the gluon field, and red lines the quark paths.




Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified
theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the “Standard Model.”
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the cloud of gluons or the gluon field, and red lines the quark paths.
9 9 a P Two protons colliding at high energy can ©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-
An electron and positron g 0 produce various hadrons plus very high mass tion of teachers, physicists, and educators. Send mail to: CPEP, MS 50-308, Lawrence
A neutron decays to a proton, an electron, (antielectron) colliding at high energy can particles such as Z bosons. Events such as this Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text
and an antineutrino via a virtual (mediating) annihilate to produce B® and B° mesons one are rare but can yield vital clues to the materials, hands-on classroom activities, and workshops, see:
W boson. This is neutron B decay. via a virtual Z boson or a virtual photon. structure of matter.
http://CPEPweb.org




Dark Matter/Dark Energy:
The Scientific Approach

* Evidence
— Meets the Sagan Standard
+ |deas - oo @T T3

— Rooted. in exciting |deas about extending the
standard model of pa;tldie physics

* Probes
— Full court press — answers

e soon!

'



Carl Sagan:

Extraordmyy 4 4
Claims Require
Extraordinary-

Evidence



Evidence for Dark Matter

 Flat rotation curves of galaxies (galaxies
have large, dark halos)

» Clusters are held together by dark matter
(galaxy motiong@ gravitationallensing)

* Without the gravity of exptic'dark matter
cannot make observedosfructure

* Airtight evidence for non b
— BBN/CMB census. of stuff i

IC hature
lverse




Airtight Evidence for
Nonbaryonic Dark Matter

WMAP 7yr 3
ACBAR ®
QuaD ¢

CMB & BBN
Q.h? = 0.021 * 0.001

\TACH
CMB/SDSS
Q,,h2 =0.13 + 0.005

200 discrepancy




BIG Gap Between Matter and Baryons

Baryons: 21 +1 Matter: 1305

» ©

30 40 50 60 70 80 90 100 110 120 130 140 1




Dark Numbers

» Stars: 0.5% of critical density

* Atoms: 4.5% of critical density

» Matter total: about 28% of critical density
* Dark Atoms: 4% of critical density

Bottom Line: Atoms can only explain 4% of
the Dark Matter, the other 24% must be a
new form of matter (“exotic dark matter”)
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Big Dark Questions

* Where are the dark atoms (atoms: 4.5%
total vs. in stars: 0.5%)?

— Probably hot gas; seen in clusters

 Neutrinos: how much of the dark matter is
neutrinos?

— Between 0.2% and 2% (comparable to what
exists in stars!)

 \What is the Rest of the Dark Matter?

— Neutralino: Accelerators, Specialized detectors
and space

— Axions: Specialized detectors



Finish the Baryon Story

0 Sbherﬁid Stars
[ Disk Stars
B atomic gas

E molecular gas
M Cluster HII
[ Group HII




The First Missing Matter Puzzle: Helium

H ‘ Helium
||I|I|I|I|I|I|I|l|l|l|l|Il||||||||||||||||||||||||||||||||||||||||||I Wavelength
400 nm 450 nm 500 nm 550 nm B00 nm B50 nm 700 nm

Bright Line Spectra of Helium and Neon

1868: Janssens and Lockyer 1895: Ramsay solves puzzle by
find evidence for new element, the D3 line isolating He gas produced by cleveite



Nati-ai Helium Monument
Celebrating 100*" Anniversary of Discovery




National Helium Monument
Celebrating 100*" Anniversary of Discovery




Dark Matter Candidates
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Dark Matter Candidates

DATES
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Full Court Press!!

Produce at an accelerator
Detect them in our halo
Detect annihilation products
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Juan Collar




Soudan Mine
Dark Matter Search



Dark Matter annihilating in our
halo produces positrons,
neutrinos and gamma rays

1.5 kilometers

2.5 kilometers




Recent Pamela Positron Data
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The neutralino is very attractive,
but don’t forget the axion

*Prediction of the most
attractive solution to
strong CP problem
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The neutralino is very attractive,
but don’t forget the axion
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Detecting Cosmic Axmns
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The Dark Matter Decade

 Hints (and distractions) in the air:
Pamela, Fermi-Haze, WI\AAP Haze,
ATIC. CDMSH R

- New capabilities: LHG Xenon1OO
Fermi, . h

. Predlctlon The WIMP/
hypothesis will be teste

INO
cade!



Big Surprise? —

ASTRONOMY

No Dark Matter

Seeing Through Dark Matter

Stacy McGaugh

Dark matter was proposed to explain galaxy dynamics. A modification of Newton’s law of

gravitational force may offer a better explanation.

he universe appears to be dominated by
invisible components that astronomers

call dark matter and dark energy. The
astronomical evidence implicating dark mat-
ter has been apparent for a generation (/): The
rotational speeds of objects in extragalactic
systems exceed what can be explained by the
visible mass of stars and gas. This discrepancy
hasled to the infe
than meets the eye. However, this inference
requires that Newton’s law of gravitational
force be extrapolated well beyond where it
was established. In addition, laboratory
'k matter have yet to bear fruit.
This lack of corroboration, combined with the
increasing complexity and “preposterous”
nature of a once simple and elegant cosmol-
, leads one to wonder if perhaps instead

y is to blame.

Simply changing the force law on some

¢ that there is more mass

searches for d

idea that has proven surprisingly resilient is
the modified Newtonian dynamics (MOND)
hypothesized by Milgrom (3) in 1983.
Rather than change the force law at some
large length scale, MOND subtly alters it at a
tiny acceleration scale, around 10-'ms2. In
systems with gravitational accelerations
above this scale (e.g., Earth, the solar sys
tem), everything behaves in a Newtonian
sense. It is only when accelerations become
tiny, as in the outskirts of galaxies, that the
modification becomes apparent.

MOND has successfully described the
rotation curves of spiral galaxies (sece the
figure) (4). In case after case, MOND
correctly maps the observed mass to the
observed dynamics. Why would such a
direct mapping exist between visible and
total mass if in fact dark matter dominates?
Moreover, MOND’ explicit predictions for
low surface brightness galaxies have been
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Big Surprise? — No Dark Matter

ASTRONOMY

Seeing Through Dark Matter

If MOND is Right
I’ll Eat My
Powerpoint
(laptop included)!

gravity is to blame. total mass if in fact dark matter dominates?
Simply changing the force law on some  Moreover, MOND’s explicit predictions for

large length scale does not work (2). One  low surface brightness galaxies have been
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DARK ENERGY
MAY BE The MosT

PROUND PROBLEM
IN ALL OF SUENE TcDAY







Youbetcha Katie,
| believe in Dark
Energy — we can
see it from
Alaska!
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Discovery! - 1998

\ / J

Hi z Supernova Team

Supernova Cosmology Project




Discovery! — 1998

&4 Mark Philips [

Supernova Cosmology Project




Two Technological Enablers:

1. Large (100 Mpixel) CCD
Cameras

2. SNe la: Bright, Standardizable
Candles (1.4 solar mass bomb)
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The Discovery Data

Perlmutter et al, 1999
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Carl Sagan:

Extraordmyy 4 4
Claims Require
Extraordinary-

Evidence



1000 SNe from:
the original teams +

SNLS, ESSENCE, SDSS,
CfA, CSP; ...

N
"4 /

More data §trog'ignal




SDSS-II §upernova Survey

\.' L

200414

SS-11

B. Dilday (U. Chicago) for the SDSS-II Collaboration
- -

~500 Well studled SNe la, s e for framing
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33 nearby (JRKO7)

103 SDSS-II (this paper)
56 ESSENCE (WV07)
62 SNLS (AstierO6)
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Curve = concordance cosmao

=1.005 £ 0.006
=0.28 £ 0.015

only consistent if
Q) ie =0.72 £ 0.015
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Baryon Acoustic Oscillations (BAO):
Zel'dovich’s Standard Ruler

WMAP 5yr ¢
Acbar ¢
Boomerang <
CBI ¢

100 500 1000 1500
Multipole moment [




Baryon Acoustic Oscillations (BAO):
Zel'dovich’s Standard Ruler

Correlation function
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New stand alone evidence for
cosmic acceleration from
clusters observed by Chandra

A.Vikhlinin et al, ApJ 692, 1060 (2009) iv:0812.2720]
36 Clusters w/<z>~0.55 and 49 w/<z>~0.05



VIKHLININ ET AL.
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F1G. 2.— Illustration of sensitivity of the cluster mass function to the cosmological model. In the left panel, we show the measured mass function and predicted
models (with only the overall normalization at z = Oadjusted) computed fora cosmology which is close to our best-fit model. The low-z mass function is reproduced
from Fig, 1, which for the high-z cluster we show only the most distant subsample (z > 0.55) to better illustrate the effects. In the right panel, both the data and the
models are computed for a cosmology with (24 = 0. Both the model and the data at high redshifts are changed relative to the (1, = 0.75 case. The measured mass
function is changed because it is derived for a different distance-redshift relation. The model is changed because the predicted growth of structure and overdensity
thresholds corresponding to Acrie = 500 are different. When the overall model normalization is adjusted to the low-z mass function, the predicted number density
of z > 0.55 clusters is in strong disagreement with the data, and therefore this combination of () and Q4 can be rejected.




Consistent with
all observations:

Q,=0.71 % 0.02
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Very elastic
stuff (p < -p/3)
with repulsive %

gravity Is
called “dark
energy”
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May 1998

Birth of Funny Energy
But, Focus Groups
Didn’t Like Name

August 1998 ey
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Dark Energy

Defining features:
* Large negative pressure, p ~ -p, SO that

(p+3p < O et T

» Smoothly dlstrlbuted' 5
. Not particulate (dark r‘hatter ER

Simplest example:
* Energy of the quantum
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Dark Energy

Defining features:
* Large negative pressure, p ~ -p, SO that

(p+3p < O et T

» Smoothly dlstrlbuted' 5
. Not particulate (dark r‘hatter ER

Simplest example:
* Energy of the quantum




Ppe ~ (1 +z)3*wW)

W = pressure/energy density
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ppe ~ (1 +2z)3HW)

= pressure/energy density




The Gravity of Nothing
Is Repulsive

. But How Much Does
Nothing Weigh?

Apparently, Way Too Much or
Possibly Nothing

to be more precise, the
answer is nonsensical
(infinite) — not as bad as a
finite answer that is off by
orders of magnitude
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The Gravity of Nothing
Is Repulsive

.. But How Much Does
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The Gravity of Nothing
Is Repulsive

.. But How Much Does
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Now we have two puzzles:

Why does rgthing. weighs so little’?
&1
“What'is darkefergy?

Puzzles could be relat'nrelated!
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Vacuum Energy Problem Solved
by Supersymmetry or ?
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“tWhat~~me orPy?"

Theorists:
When in
doubt, just
|add a scalar
field
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“What~~me worry?”

(1 read MAD!)
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Dark Theory Summary

1. GR + repulsive gravity of dark energy

(Conservative)

— Quantum vacuum energy/cosmological constant
— “Quintessence’ X 4

— 7% Something eDwnh negative pressure

2. No dark energy, new th.eo.ry of gravity
(Progresswe) S N

3. No dark energy, no new th
(Birther)

— Non linear gravitational effects
— Center of the Universe

of gravity




Two Big Dark Questions

Does Dark Energy change with time
(i.e., is dark Qlergy vacuum energy)?

O.'

Does Cosmic Acq:eleratlon require

going beyond Gene'latlwty’?
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Two Big Dark Questions

Does Dark Energy change with time
(i.e., is dark @nergy vacuum energy)?

Does Cosmic Acceleration require

going beyond Gene’lativity?



Where We Are Today

Dark Energy: SRSSALMALAAM LSS
Qpe=0.76 £ 0.02

w =-0.94+£0.1
(£ 0.1 sys)




New Results 400d Survey

Alexey Vikhlinin et al, CCCP
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Known Probes of Dark Energy

* Supernovae: Geometric

« BAO: Geometric + simple physics

* Weak Lensing: Geometric + dynamlc
* Clusters: Dynam s+geometrlc

« Evolution of large-scale s.tructure (dynamic)

— Must reproduce LCDM 'o.‘ N
— Growth factor/réd=shift sbace dist

« CMB and other precision dat
cosmological parameters (pr

lons

down
ors)



Dark Energy Survey
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Dark Energy Survey




150 GHz
Unfiltered

150 GHz

225 GHz
Filtered

0517-5430 0547-5345 0509-5342 0528-5300
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First Results from the
South Pole Telescope
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Impressive Array of Dark Energy
Projects on the Horizon

« BAO: SDSS/2dF, WiggleZ, FMOS, BOSS HETDEX,
WFMOS; PAU > §RUCLID'& JDEM ~ -

CL: SZA, SPI, DES;ACT, Chandra 2> _eROSITA
SNe: DES, PanSTARRS 2 L§ST EUCLID & JDEM
WL: DES, PanSTARRS > L ST,,EUCLID & JDEM

CMB et al: WMAP/ACT/SRT/Planck — cosmological
degeneracies make‘many other ob ons valuable

ant tests of
erstanding of

On the way to few % in wg, 10% in

underlying gravity theory ... and d
dark energy



u | s ' -
dark energy




The New Cosmology

 \What we know for sure

— Quark Soup to Expanding Galaxies

— BBN,.Gravity the masterbunder CMB, the
phenom a of Dark Mattgr and Accelerated
Expansi Ve

. Knocking at the’ Doqr (le testing now)

— Particle dark matter, inflation, dark energy,
(baryogenesis)

* Wild Speculation

— Before the big bang, rse, extra
dimensions, emergence of space
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In the Presence of Dark
Energy, a Flat Universe
Can Expand Forever,
Re-collapse, or Even
Experience a Big Rip!
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In the Presence of Dark
Energy, a Flat Universe
Can Expand Forever,
Re-collapse, or Even
Experience a Big Rip!
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Important clue
or
coincidence?
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At the very
least, we can
now say that
cosmology is

the battle
between two ~
dark titans
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N’'s Checkered History






Earlym Confusion
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1917 — 1929

— Einstein: static, finite, positively curved Universe
Pw = 2P, R = 1/(4T1G py,) 1?2

— de Sitter (1917) vacuum solution, first derlvatlon
of Hubble’s Law =

— Eddington-Lemaitre long lived cosmologies |

— Hubble discovers expansion

— Einstein: “my greatest blunder”

— Eddington remains obsessed
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Revivals

1948 - 1970

— Bondi & Gold, Hoyle: Steady State Cosmology:
“perfect cosmology”

— Strong signs of evolution: quasars, radio sources
and CMB kills a beautiful theory

— Petrosian, Salpeter & Szekeres (abudnace of z ~ 2
QSOs) and Gunn & Tinsley (data)

— Rise of Standard Cosmology (Hot Big Bang)



Quantum Vacuum Energy:
Most Embarrassing Problem
in all of Physics

e 1930s: Pauli, “Size of Universe could not reach
to the moon”
e 1968: Zel’dovich articulates the problem

* 1989: Weinberg, “Bone in the throat
theorists” bet




Most Anticipated Surprise Ever

1981 — 1984: Inflation & CDM
1984 on - “Q problem”

1984 — 1995: A solution, best fit
Universe, COBE and Q,, ~ 0.3 &

triumph of ACDM
1998: The Accelerating Universe
1998: Cosmology Solved Debate

1998: Birth of Dark Energy
and a new puzzle
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Fritz Zwicky

Discoverer of
the Dark Side
circa 1935







Vera Rubin and Flat Rotation Curves
Dark Matter Close to Home




1970 1980 1990 2000
s A

. Mass-to-light ratios on limited parts of the galaxy
. Peculiar velocity measurements probe larger regions

. Cluster fair sample, LSS, peculiar flows
. CMB, LSS, BAO, clusters -




