[image: image5.png]ADec. from Sgr A* (arcsec)

o
=

o
o

o
=)

|
o
o

|
o
=

50-2
50-16
S0-19
S0-1

50-20

0.4

0.2 0.0 —0.2
ARA from Sgr A* (arcsec)

—0.

.
.
.
°
.
4




[image: image6..pict] Weighing a Black Hole


Introduction: To Catch a Black Hole – Mapping Motion

Astronomers believe that there is a supermassive black hole at the center of the Milky Way, as well as at the centers of most galaxies in the Universe.  What makes astronomers believe in these supermassive black holes, if, by definition, we can't see black holes since not even light can escape from them?  

The supermassive black holes at the centers of galaxies are thought to have masses between hundreds of thousands to tens of billions times the mass of our Sun.  Because of these tremendously large masses, the gravitational fields of supermassive black holes are extremely strong (remember that the more massive an object is, the stronger its gravitational field).  So, by observing the motions of stars near the center of our galaxy – but not so near that they are within the supermassive black hole's “event horizon” (the boundary within which nothing can escape the black hole's gravitational pull) – astronomers can deduce the mass of the object at the galactic center! 

This is exactly how Hyde Park native Andrea Ghez and her team at UCLA discovered the black hole at the center of the Milky Way.  This group of astronomers observed the motions of stars in a region near Sagittarius A, an area in the sky located in the constellation Sagittarius from which there is a lot of radio emission, and which is believed to correspond to the approximate location of the galactic center.  This was not easy to do!  In order to track the motions of these stars, they observed the same part of the sky year after year using the largest optical telescope in the world, the 10-meter Keck Telescope in Hawaii.  By comparing observations from different years, they were able to identify a number of stars near Sagittarius A whose positions were changing rapidly.  Remember that all stars in the Milky Way are in motion, orbiting the center of the galaxy just like the planets of our solar system orbit the Sun, however these particular stars were changing position in a way that suggested that their velocities were incredibly fast compared to an average star in the Milky Way.

But how did Andrea Ghez and her team determine that it was a black hole tugging on the stars and making them move so quickly?  This lab will help you understand why.

Part I:  Mass Matters – Test the Effect of Mass on the Speed of the Orbit 

The effect of the gravitational force of the supermassive black hole at the galactic center on nearby stars is similar to the effect of a string swinging in a circle above your head on a ball attached to the end of the string.  Both the stars and the ball naturally want to keep going in the direction that they are moving at any given time, i.e., they want to fly away from the center of their orbit along a path that is tangential to the orbit.  

In this part of the experiment we will compare how fast an object orbits around objects of different masses.  First, we will get a qualitative feel for what happens, and second, we will make more detailed quantitative measurements and explore the mathematical relationships involved in the motion.

Materials:

Centripetal force assembly – see diagram

· rubber stopper 

· mass set (20g, 50g, 100g)

· string

· clip

· tube

· hook

· meter stick/metric tape measure

· stopwatch

Mass Matters – Qualitative

Procedure

1. Attach a 50g mass to the bottom of the assembly and practice swinging the rubber stopper over your head.  BE CAREFUL not to hit anyone or anything with the rubber stopper at the end of the string.  Try to keep your wrist straight, level, and in a fixed position. Practice whirling it at steady pace.

2. Note what happens as you vary the speed of the orbiting rubber stopper.  Then swing the stopper at a rate such that the marker on the vertical string at the bottom just reaches the tube.  (Note:  the marker will help you to keep the radius of the orbit constant when you are swinging the rubber satellite.)  Record your observations.

3. In your lab notebook, make a prediction for whether the bob will orbit faster when balancing the 50g or the 100g mass. 

4. Test your prediction using a 100g mass.  In your lab notebook describe how you tested your prediction and what you found.

Mass Matters – Quantitative 

In this part of the lab we will measure the period (P)– the time for the rubber stopper to return to its original position – for different hanging masses and calculate the velocity of the rubber stopper for each mass.  We will then explore if there is a natural mathematical relationship between the hanging mass and the velocity.

Procedure:

1. Assemble your gizmo with a 50g suspended from the bottom (see diagram). 

2. Practice swinging the bob at a steady rate such that the marker is just at the bottom of the vertical tube.

3. With a partner, determine the period for one revolution.   In order to do this as accurately as possible, first measure the time required for ten cycles, and then find the average by dividing that number by ten.  Repeat three times and average your result.  In your lab note book summarize your data in a table like the one below:

	Mass (g)

Trial number
	Time for 10 cycles (sec)
	Period (P)

Time for one cycle (sec)

	1
	
	

	2
	
	

	3
	
	

	   Average period with ___g mass  (sec):


4. Repeat the procedure to determine the period when there are 70g, 100g, 120g and 150g suspended, with a data table like the one above for each mass.

5. Answer the following questions in your lab notebook: Which mass had the longest period? Which had the shortest?

Suspending a heavier mass results in a larger tension in the string, and therefore also a stronger tug on our orbiting stopper.  So, in order to keep the marker steady, the stopper needs to move at a faster speed.  We will now see if we can determine a relationship between how fast objects orbit and how hefty the tugger is.  We will compare velocity (v) and velocity squared (v2) to the string tension, which is proportional to the mass of the tugger.

Velocity (v) is distance traveled per unit time, and is measured in units of meters per second (m/s).  With all the different mass configurations the rubber stopper traveled the same distance each trip around the circle.  This is because we fixed the radius of the circle by keeping the marker at a fixed location.  The distance around a circle is the circumference, and is given by: 

Distance traveled = circumference = 2 p r = C

where r is the radius of the circle.

6. Measure the radius of the gizmo and calculate the circumference. Record in your lab notebook, and make sure to include units.

7. Calculate the satellite’s velocity for each mass

v = C/P = 2 p r/P

v = distance/time (m/s)

C = circumference (m)

P = period for one revolution (sec)

8. In your lab notebook create a new data table:

	Mass 

(g)
	Average period: P (s)
	Velocity: v

(m/s)
	Velocity squared: v2

(m2/s2)

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


9. In your lab notebook, make a plot of mass vs. velocity (v) and mass vs. velocity squared (v2).  What can you say about the relationship between mass and velocity?

Part II: Observing the Black Hole

Stars orbit around massive objects in our Universe in a similar way to how the rubber stopper orbits in our setup.  However, the distances, masses, and timescales involved at the astronomical scale are enormous in comparison to those of our experiment (light-years, billions of solar masses, and years vs. meters, grams, and seconds).

Watch the movie based on the observations made by Andrea Ghez and her group. Write down your observations: what is being observed and how often it is observed? http://www.astro.ucla.edu/~ghezgroup/gc/pictures/orbitsMovie.shtml

This animation is based on careful observations of a very, very, very small patch of sky in the direction of the center of the Milky Way Galaxy made over many years.  The observations required great care because they are in a very crowed part of the Galaxy and because the changes appear very small from our distant vantage point.  On the next page is an image of what our Galactic center looks like. It is a million times more crowded there than the region near our Sun!  In the middle of this picture is Sagittarius A*, which is where the detailed observations were made. This region is show in more detail in the blow up section.

Note on angular units and sizes:

	unit
	value
	symbol
	abbreviation(s)

	degree 
	1/360 circle 
	° 
	deg

	arcminute 
	1/60 degree 
	′ (prime) 
	arcmin, amin, 

	arcsecond 
	1/60 arcminute 
	″ (double prime) 
	arcsec

	milli-arcsecond 
	1/1000 arcsecond 
	
	mas


An arcsecond is 1/3600th of a degree.  Recall the full moon is about half a degree in the night sky or ~1800 arcseconds.  Note that the entire area of observation is about one square arcsecond.

Angles for Distances?  

Astronomers like to measure objects in terms of angular scale (most often very small angular scales); because the objects they observe are very far away. This is done for two reasons, foremost for the practical reason that angular size on the sky is what astronomers can measure from our vantage point on earth.  Angular size is also a very useful measurement because one does not need to know exact distances or sizes to make useful measurements, and because it is easy to compare images from one telescope to another.

Also, in many astronomical situations, when objects are very distant and appear very tiny, something called the small angle approximation will hold true.    When the conditions are right to use the small angle approximation, apparent angular size is directly proportional to actual size for a given distance.  Thus if we know the distance to an object and can determine it apparent angular size, we can determine its actual size. (e.g., size = apparent angular size x distance)

[image: image1.jpg]Keck/UCLA Galactic Center Group




                                        [image: image2.png]



The images above are of one observation at one moment in time.  In order to map the motion of the stars, it was necessary to observe this small portion of the Galactic center for over a decade. In the figure below, the positions of these stars are plotted over time, dots are at approximately one year intervals.  It is clear that the stars in the central stellar cluster are moving from one year to the next. 
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In the first part of this lab, we determined that there is a natural relationship between how fast an object orbits and the force pulling on it.  In the 16th century – based on careful observations of the planets in the solar system – Johannes Kepler devised empirical mathematical laws for orbital motion.  Kepler’s 3rd law, "The squares of the orbital periods of planets are directly proportional to the cubes of the semi-major axis of the orbits.", combined with the observational data allow us to calculate the mass (M) of the supermassive object that is making the stars orbit so quickly.  

Kepler’s 3rd Law:

M  =  a3/P2

a = semi-major axis of the star’s orbit in astronomical units (AU)

P = period of the star’s orbit in years

Procedure

1. Using the diagram on page 6, measure the angular radius () of the orbits of the stars S0-2, S0-16, S0-19, S0-1 and S0-20. Enter them into a data table in your lab notebook

2. Determine the period, time to make a complete cycle, by counting the number of dots in each star’s orbit (note one dot/year), and record in your lab notebook.

	Name
	 (arcsec)
	Period

(yrs)
	a

(AU)
	M

(Msun)

	S0-2
	
	
	
	

	S0-16
	
	
	
	

	S0-19
	
	
	
	

	S0-1
	
	
	
	

	S0-20
	
	
	
	

	                           Average Mass (Msun)   __________


In step one, we measured radii in terms of angles but we need distances.  In order to convert the angular radius of each star’s orbit into a distance, we need to invoke the small angle approximation.  Given that we have measured the distance (d) to the center of the galaxy to be 800 parsecs, we can determine the length of each radius (or in the case of elliptical orbits, semi-major axis, a) for each star using the small angle approximation:

a =  x d

3. Given d =  8000 parsecs, solve for a, length of semi-major axis, and record.  
4. Now we can calculate the mass that is responsible for these orbits using Kepler’s 3rd law:     M  =  a3/P2       You will obtain 4 different measurements for the mass, M.  Use the average of these as your final mass calculation.

What could possibly be this massive?

Note on units and coordinates used in astronomy:

Astronomical unit (AU) - a unit of length approximately equal to the distance from the Earth to the Sun.         

1 Astronomical Unit = 149.60×109 m

Parsec - approximately 3.086×1016 m, or about 3.262 light-years.

Mass of the Sun (Msun ) – 1.9891 x 1030 kg = 1.9891 x 1033 g

Right Ascension (RA) and declination (Dec.) are a coordinates used in astronomy to describe positions on the celestial sphere.  Dec is comparable to latitude e.g., the angle above or below the Ecliptic, and RA is similar to longitude. 

Notes on Real Data: Inclination Effects & Calculated Periods  

The diagram on page 6 is based on the real data but massaged a little bit.  The real observational data is show below.  We see that there are a few key differences.  First there are many fewer points and second the true orbits of these stars are inclined with respect to the paper.  It is not possible to show the inclination in 2 dimensions so for the lab we projected all the orbits on into the plane of the paper.   The plot below shows the actual data points collected by astronomers at the telescope.  From these few points and the laws of physics they were able to determine the stars’ orbits (period and shape) and from that the mass of the supermassive black hole.  With each bit new observation the model gets better and better.  For instance the period of S0-1 was initially calculated to be 190 years and now is determined to be 104.99 years.
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Note the current calculated orbital periods are:

	Name
	Period

(yrs)

	S0-2
	14.98

	S0-16
	28.93

	S0-19
	59.59

	S0-1
	104.99

	S0-20
	52.45


m





In astronomical terms, these stars are extremely close to Sgr A*.  When observed year after year, we see that the stars orbit about Sgr A* very quickly!





Image credit: www.justice.org.uk
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